2023/04/27 SCALE Open Mic Marta Berrios and Alfonso Barbas mbt@enusa.es

ControlBUC

Automation of Criticality Calculations with Burnup Credit (BUC) under Flexible Power Operation (FPO)

Index

Impact of FPO on criticality analysis

Methodology

ControlBUC

Results & Conclusions

Impact of FPO on criticality analysis

Flexible Power Operation (FPO)

Partly inserted CRs

Power variation

Criticality Analysis

Differences

Axial burnúp profile

Isotopic composition since the neutron spectrum is harder

Impact of FPO on criticality analysis

NUREG/CR-6759 rev.0 "Parametric Study of the Effect of Control Rods for PWR Burnup Credit ", February 2002

The effect is greater the higher the burnup in which the control rod is inserted

Impact of FPO on criticality analysis

Criticality Analysis

Envelope scenario

Methodology

T1 – CRout + nodal relative power1

T2 – CRin + nodal relative power2

T3 – CRin + nodal relative power3

T4 – CRout + nodal relative power4

1 irradiation history per node Capture effects

Criticality Analysis

STARBUCS

Used in ENUSA for criticality analysis PWR BUC

Simulates the axial burnup profile using only one ORIGEN library

(the same enrichment and irradiation conditions)

Unable to simulate different irradiation histories **per node** (CR + Relative Power)

Methodology

Methodology

Simulation of each node irradiation condition (CRin/CRout + variation of relative power) Save the cross-section library for each node

Isotopic composition for the burnup of each node

k_{eff} of the spent fuel

CSAS5

TRITON

ORIGEN

ControlBUC

ControlBUC

The code can detect automatically any changes on a second run, so that only what is necessary is executed, saving time and effort.

Results

FPO impact

Conclusions

ControlBUC

- Tool developed in Python and validated at ENUSA to perform criticality analysis calculations automatically using the SCALE package codes (6.1 and 6.2).
- User-friendly and helps to reduce the work time and possibility of user-errors.
- It can be used in multiple types of criticality analysis:
 - FPO
 - PWR BUC with more than one fuel mixture
 - BWR at the peak reactivity (PeakBUC)

Thank you for your attention

Marta Berrios and Alfonso Barbas mbt@enusa.es

